<u>Class Notes</u> <u>Cellular Respiration</u> Questions/Main Idea:	Name:
Cellular Respiration	Using glucose to make energy (ATP).
Where Do Plants Get Energy?	Plants get energy from the sun and store it in the bonds of glucose
Glucose Turns into Energy	 How do we get energy? by eating food. What types of food provide the most energy? Carbs (sugars or glucose) have the most energy What does your body do to the food you eat? digests our food (breaks apart bonds), releasing energy
Breaking Bonds	 Breaking bonds releases energy! Energy is "stored" in the glucose bonds; breaking them releases the energy What form of energy do our cell (and our body) use? the molecule ATP So our body breaks down glucose and uses it to make ATP (ENERGY!) Which organelle is responsible for producing energy for our cells? The MITOCHONDRIA
What is ATP?	 ATP (adenosine triphosphate) is a nucleic acid that can transfer energy within the cell. Ex: a small amount of energy from a glucose molecule can be used directly The extra energy is transferred to ATP. The energy in ATP is stored in the bonds between the phosphates (ATP has 3 phosphates).
Steps of Cellular Respiration Step 1: Gylcolysis	 glyco = refers to glucose lysis = break apart Glycolysis = break down 1 glucose into 2 pyruvic acid molecules, which have three carbons each (splits glucose in half) Also makes 2 ATP! ^(C) Takes place in the cytoplasm
Why Glycolysis?	 Glucose molecules are too large to move into the mitochondria, so glycolysis makes them smaller to get through the mitochondria's membranes
Possible paths in respiration Oxygen?	 After glycolysis, there are two possible paths: Aerobic respiration – requires oxygen Anaerobic respiration – does not require oxygen; happens if oxygen is lacking

Aerobic Respiration	 An aerobic process (requires oxygen). Takes place in the mitochondria. Equation: 6O₂ + C₆H₁₂O₆ 6H₂0 + 6CO₂ + 36ATP Oxygen + Glucose Water + Carbon Dioxide + Energy
HOLD IT! Notice Anything Similar?	Equation for photosynthesis: Energy + $6H_2O$ + $6CO_2$ C ₆ H ₁₂ O ₆ + $6O_2$ Equation for aerobic cellular respiration: $6O_2$ + C ₆ H ₁₂ O ₆ $6H_2O$ + $6CO_2$ + $36ATP$
Organisms that Do Aerobic Cellular Respiration	 Plants Animals Fungi Protists Some bacteria almost everything alive!
Aerobic Cellular Respiration	 Recap: Step 1 = glycolysis 2 ATPs produced in cytoplasm and enter mitochondria. For aerobic respiration, in mitochondria: Step 2 = Krebs Cycle (Citric Acid Cycle) - in matrix Step 3 = Electron Transport Chain - in inner membrane ATP is generated in each step, but most of the ATP is made in the Electron Transport Chain
Krebs Cycle and ETC	See separate handouts
Anaerobic Cellular Respiration	 AKA: fermentation Two types: Alcohol fermentation Lactic acid fermentation Both take place in the cytoplasm. Each creates 2 ATP from each pyruvic acid molecule.
Alcohol Fermentation	 Yeast can do aerobic or anaerobic respiration. Grapes turn to alcohol by adding yeast in containers with out oxygen. Bread rises because yeast gives off CO₂ bubbles while fermenting in dough.
Lactic Acid Fermentation	 When humans (and other animals) exercise intensely, their muscles often use more O₂ than is available When O₂ runs out, muscles switch to anaerobic respiration to try to keep up with energy demand. This is lactic acid fermentation. The build up of lactic acid is what makes your muscles sore.
Aerobic v. Anaerobic Respiration	 You get <u>way</u> more ATP from aerobic cellular respiration than from fermentation. Fermentation is mostly used to provide organisms with short-term bursts of energy when oxygen is not available.
Summary:	