<u>Class Notes</u> <u>Protein Synthesis</u> Questions/Main Idea:	Name:
The function of DNA	 The DNA molecule contains all your hereditary information in the form of genes A gene is a coded section of DNA; it tells our cells how to build specific proteins Genes code for EVERYTHING our body needs and does (saliva, bones, eye shape) Because DNA is so large, it is stuck inside the nucleus It needs a messenger to move the information from nucleus to protein production locations (ribosomes!)
DNA needs RNA!	 RNA is a nucleic acid messenger between DNA and ribosomes 3 differences between DNA and RNA: RNA has ribose sugar RNA is single stranded RNA contains a nitrogen base called uracil (U) instead of thymine.
Compare and contrast DNA and RNA	 DNA Double stranded molecule Contains thymine Contains deoxyriboss sugar Found only in nucleus Ande of nucleotides Contain adenine, and cytopiasm Found only in nucleus
3 types of RNA	 Messenger RNA (mRNA): copies DNA in the nucleus and carries the info to the ribosomes (in cytoplasm) Ribosomal RNA (rRNA): makes up a large part of the ribosome; reads and decodes mRNA Transfer RNA (tRNA): carries amino acids to the ribosome where they are joined to form proteins
Protein synthesis	 Protein synthesis is the assembly of amino acids (by RNA) into proteins Involves two steps: 1. <u>Transcription</u> – copying DNA code into mRNA 2. <u>Translation</u> – reading the mRNA code and assembling amino acids into a polypeptide chain (protein)
Transcription	 Performed in nucleus by mRNA mRNA "reads" single DNA strand and forms the complementary copy

How transcription works	 DNA strand splits, exposing the active strand Complementary mRNA nucleotides line up opposite the active strand, forming mRNA mRNA leaves the nucleus
Translation	 Translation occurs in ribosomes (in cytoplasm) All three types of RNA work together during translation to produce proteins
Decoding mRNA (translation)	 The sequence of bases in an mRNA molecule serves as instructions for the order in which amino acids are joined to produce a polypeptide Ribosomes decode the instructions by using <u>codons</u>, sets of 3 bases that each code for 1 amino acid Each codon is matched to an <u>anticodon</u>, or complementary sequence on the tRNA to determine the order of the amino acids
Using a codon chart	 A <u>codon chart</u> is used to determine the sequence of the amino acids in the polypeptide The sets of 3 mRNA bases (codons) are used to find the amino acid
Decoding Practice	Second Base U C A G U C A G U C A G U C C A O U Phe Sec Tyr Cys C Leu Pro His Arg D C Leu Pro G D C Leu Pro G D C Leu Pro G D A A D Pro Pro D Pro Pro D Pro Pro D Pro Pro D Pro <th< td=""></th<>
Example 1	DNA: TAC GCA TGG AAT mRNA: Amino Acids:
Example 2	DNA: CGT GGA GAT ATT mRNA: Amino Acids:
Summary:	I