Class Notes	Name:
Cell Membrane	Period:
Questions/Main Idea:	Date:
What are the major functions of the cell membrane?	 His friends call him the plasma membrane He is thin and flexible He has two main functions: Protection – protects the cell from the outside environment Regulation – controls what can enter and exit the cell He is <i>selective</i>: allows some things to pass through more easily than others He is <i>selectively permeable</i>: permeate is a fancy way to say "pass through."
What is the Fluid Mosaic Model?	 The cell membrane is NOT a rigid structure with immovable components! The cell membrane is <i>fluid-like and flexible</i> Within the membrane, molecules can move around
What is the Phospholipid bilayer?	 LIPIDS: Phospholipids make up the majority of the cell membrane Hydrophilic head made of phosphates (Phospho) Hydrophobic tail made out of fatty acids (Lipid) To protect the hydroPHOBIC tails from water, they form a bilayer which keeps the tails huddled inside and the water-loving heads outside.
More parts of the cell membrane	 Also embedded within the lipid bilayer are proteins and carbohydrate chains Protein molecules bring materials into the cell and receive signals from outside the cell Carbohydrate molecules (attached to proteins or lipids) have antenna to help cells identify or recognize other cells
Match the cell membrane structure or function with the correct letter from the diagram	H B B F G
	Protein (only)Fatty Acid Tail Helps move large material Carbohydrate (only) Involved in cell recognition across the membrane Lipid bilayer Carb. attached to a lipid (look Carb. attached to a protein Phosphate Head for the sugar rings) Outside cell
What is a solution?	 Molecules dissolved in a liquid = SOLUTES Liquid/fluid dissolving them = SOLVENT These two together make a SOLUTION In a salt solution, is the solute and is the solvent In a sugar solution, sugar is the solute and water is the solvent.
What are concentration and equilibrium?	 Solutions will spread out their dissolved molecules until they are equal throughout. EQUILIBRIUM = molecules are spread equally CONCENTRATION = number of molecules in an area per unit volume. High concentration: more solutes per unit volume Low concentration: less solutes per unit volume

What happens with a barrier?	• If the solutions on either side of the barrier have the same concentration we
with a barrier?	 call that being at equilibrium. At equilibrium, both the solvent and solute move back and forth across the
	barrier: there is always movement .
Transport of	Materials move across the plasma
Materials	• membrane in two ways:
Across the Cell	• Passive Transport – movement across the membrane <i>without using energy</i>
Barrier	Active Transport – movement across membrane that <i>requires energy</i>
Types of Passive	Solutes move across a membrane from areas of high concentration (area and a law across testing)
Transport: 1. Diffusion	(crowded) to low concentration
	 Because diffusion depends upon random particle movements, diffusion across cell membranes does not require the cell to use energy.
Types of Passive	A special name for diffusion of water!
Transport:	 Water molecules (fast and small) pass through the cell's <i>selectively</i>
2. Osmosis	permeable membrane
	 The solute molecule is too large to pass only the water diffuses until equilibrium is reached.
Types of Passive	Large molecules or those with a charge need the help of a protein to pass
Transport:	across a cell membrane
3. Facilitated	 Proteins form a channel and molecules move through the "doorway"
Diffusion	 Each channel is specific to a particular type of molecule
	 Doesn't require energy => passive transport
Active Transport	• Some movement across a cell membrane requires energy because it is
	AGAINST the concentration (it moves solutes from low to high
	concentration—where it's already crowded)
	• When there is a difference in solution concentrations we say that there is a concentration gradient.
	Three types of active transport
Active Transport	• Pump – a special type of protein is used to PUSH molecules to across the
1. Pump	membrane
	• Ex: the Sodium and Potassium (Na/K) Pump.
Active Transport	Endocytosis (endo=in): a pocket (vacuole) forms around a large molecule
2. Endocytosis	outside the cell and buds inward to release the material inside the cell.
Active Transport	• Exocytosis (exo=out): a vacuole inside the cell fuses with the cell
2. Exocytosis	membrane and forces the material outside the cell.
Summary:	