
<u>Class Notes</u> Discovering the structure of DNA Questions/Main Idea: What is DNA?	Name:
What we already know about DNA	 Codes for proteins essential to life A nucleic acid macromolecule Monomer of a nucleic acid is a nucleotide The three parts of a nucleotide: 1. Phosphate group 2. Sugar (deoxyribose) 3. Nitrogen base
Nitrogen bases	 The nitrogen base can either be a purine or a pyrimidine. How many carbon rings does each have? Purines have 2 Pyrimidines have 1 DNA has 4 nitrogen bases: Thymine (T) Adenine (A) Cytosine (C) Guanine (G) Adenine and Guanine are purines Cytosine and Thymine are pyrimidines.
A collaborative effort!	 In the early 1900s, it was known that information had to be passed from cell to cell. However, it was not known what was responsible for carrying this information. Some scientists thought that it must be protein, others that it was the nucleic acid. Three major experiments helped show that it was a nucleic acid: Griffith Avery-MacLeod-McCarty Hershey-Chase
Frederick Griffith got lucky?	 Griffith studied pneumonia bacteria In 1928, he isolated two strains of bacteria, and injected them into mice Live R strain was harmless (mice lived) Live S strain caused pneumonia (mice died) When he injected the S Strain that was heat-killed, the mice lived BUT When he mixed the live R strain with the heat-killed S strain and injected into mice, the mice died.
Griffith's Conclusions	 When the heat-killed bacteria mixed with the live harmless bacteria, something was exchanged between them, making the live harmless bacteria deadly Transformation = process in which one strain of bacteria changes the gene(s) of another bacteria

Avery-MacLeod- McCarty Hershey and Chase	 Following Griffith (1943), scientists heat killed the virulent S strain and then selectively destroyed parts of the bacteria before combining with R strain Destroyed proteins, lipids, carbs = mice died => something different was transforming bacteria Destroyed nucleic acids = mice lived! => DNA was transforming bacteria Demonstrated that DNA was the transforming agent Experimented (1950) with bacteriophages to see if information is carried on proteins or DNA Used radioactive elements to "mark" DNA and protein
	 Only the radioactive DNA was found in bacteria cells (not proteins) Further supported Avery's experiment that genetic material is DNA
Discovery of the structure of DNA	 Many scientists contributed to determining the structure of DNA Erwin Chargaff Rosalind Franklin James Watson & Francis Crick
Erwin Chargaff	 Worked with DNA nitrogen bases, discovered (1950): In any sample of DNA, # adenines (A) = # thymines (T) # cytosines (C) = # guanines (G) Therefore, in DNA, the bases are always paired: A with T, and C with G. This is Chargaff's Rule!
Rosalind Franklin	 Worked with x-ray photography to try to find DNA structure Her "Photo 51" revealed DNA's structure (1952) Died of cancer in 1958
Watson and Crick	 Credited with finding the structure of DNA (1953) Watson got a sneak peak at Franklin's x-ray photos and used them with other evidence They described DNA as a double helix, with the strands held together by weak hydrogen bonds formed between the bases A-T and C-G.
DNA structure	 Looks like a twisted ladder made of nucleotides The nucleotide: (hosphate group, sugar, nitrogen base Sugars and phosphates make the sides of the ladder, nitrogen bases are the rungs The atoms within the two strands are held together by strong covalent bonds The two strands are held together by weak hydrogen bonds between the nitrogenous bases.
What bonds with what?	 A bond between two purines would be too wide. A bond between two pyrimidines would be too narrow. THUS, a purine always bonds with a pyrimidine. A bonds with T G bonds with C

